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Abstract. The massiveV-flavour Schwinger model is analysed by the bosonization method.
The problem is reduced to the guantum mechanids degrees of freedom in which the potential
needs to be self-consistently determined by its ground-state wavefunction and spectrum with
given values of thé parameter, fermion masses, and temperature. Boson masses and fermion
chiral condensates are evaluated. In ffie= 1 model the anomalous behaviour is found at

0 ~m andm/u ~ 0.4. In the N = 3 model an asymmetry in fermion masses < my < m3)
removes the singularity & = = and7 = 0. The chiral condensates @ét= 0 are insensitive to

the asymmetry in fermion masses, but are significantly sensitive=atr. The resultant picture

is similar to that obtained in QCD by the chiral Lagrangian method.

1. Introduction

Two-dimensional quantum electrodynamics (QE[1—4] with massiveN -flavour fermions
resembles four-dimensional qguantum chromodynamics (QCD) in many respects [5]. In both
theories nonvanishing chiral condensates are dynamically generated. Fractionally charged
test particles are confined in QEDwhereas quarks, or coloured objects, are confined
in QCD. The dynamical chiral symmetry breaking and confinement are not independent
phenomena in QER however. There would be no confinement if there were no chiral
condensates [6, 7].

It has also been recognized that QE®escribes spin systems in nature [8]. A spin
% anti-ferromagnetic spin chain is equivalent to a two-flavour massless Schwinger model
in a uniform background charge density. Areg spin ladder systems is equivalent to a
coupled set of: Schwinger models. This equivalence has been successfully employed to
account for the gap generation in spin ladder systems [9].

QED, has been analysed by various methods. On the analytic side it has been
investigated using perturbation theory, the path-integral method, and the bosonization
method. In a series of papers we have shown how to evaluate chiral condensates and boson
mass spectrum for arbitrary values of thearameter, fermion masses)( and temperature
(T) by bosonization [7,10-12]. The mass perturbation theory has been formulated for the
one-flavour model [13, 14].

Investigation in the light-cone quantization method has been pushed forward both on
the analytic and numerical sides [15-20]. The bound-state spectrum has been evaluated in
the entire range of fermion mass@t= 0 andT = 0. Subtleties in the chiral condensate
in this formalism has been noted [17].

There has emerged a renewed interest in @litDthe lattice gauge theory approach
as well [21-23]. Recently extensive simulations have been carried out fav thel and
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N = 2 models. Chiral condensates in tNe= 1 model were evaluated at= 0 and7 = 0
up tom/e < 1. The boson mass in th® = 2 model was evaluated for /e < 0.5. After
subtracting condensates in free theoty={ 0), depending on the regularization methods
employed, one finds a modest agreement between the bosonization and lattice results [23].
In this paper we further exploit the bosonization method to investigate the dependence
of chiral condensates and boson mass spectrum oA t{rerameter, fermion masses, and
temperature. The advantage of our method lies in the ability to evaluate physical quantities
for arbitrary values of th& parameter and temperature. The current method, however,
involves an approximation which is not valid for large fermion masses. Improvement is
necessary in this direction.
The Lagrangian of the model is given by

L==3FuF" + ) Wy (0, — eadu)Wa — m,a¥s — miri vra) (1.1)

wherey¢ = (1 — ¥y, and ¥4 = 3(1+ y®v,. Each field carries a charge and
massm,. We analyse the model on a circl§*] with a circumference.. The boundary
conditions are specified by

Au(t,x+L)= A, x)

_ 1.2
Iﬂa([,x‘l'L) = _eznlauwa(t?-x)' ( )
It is important to recognize that from the analysis$inone can extract physics at finite
temperaturel’ defined on a lineR?. In the Matsubara formalism of finite temperature field
theory, boson and fermion fields obey a periodic or anti-periodic boundary condition in the
imaginary time axis, respectively;

Ay (r + %x) = Au(t, x)
1 (1.3)
Ya (T + ?,x) =~V (7, x).

Hence, if one, in a theory defined aft with the boundary conditions, = 0 in (1.2),
analytically continues from the real axis to the imaginary axis, and then interchanges (or
relabels) i and x, one arrives at a theory which is exactly the same as the theory defined
on R! at T = L~1. This is a powerful equivalence. One can evaluate chiral condensates,
Polyakov loops, and various correlatorsTats 0O with the aid of this correspondence.

This paper is organized as follows. In section 2 the bosonized Hamiltonian is derived on
S1. In section 3 the vacuum is introduced and the equation satisfied by its wavefunction
is derived. In section 4 we show how the boson mass spectrum and chiral condensates
are evaluated. Sections 3 and 4 together form the basis of our formulation. It defines
the generalized Hartree—Fock approximation. The rest of the paper is devoted to applying
the generalized Hartree—Fock equation to various models to evaluate the boson spectrum
and chiral condensates. The case of massless fermions is discussed in section 5. A useful
truncated formula is derived in section 6. The detailed analysis of the massive one-flavour
model is given in section 7. The multiflavour model with degenerate fermion masses is
analysed in section 8. The case of general masses iNthe 2 and N = 3 models is
investigated in section 9. A brief summary is given in section 10. Three appendices collect
useful formulae.
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2. The bosonized Hamiltonian

Our basic tool is the bosonization method, with which we shall reduce the model (1.1) to
a quantum mechanical system of finite degrees of freedom. The bosonization method has
been developed in many-body theory [24], and in field theories on aRing25, 3, 26].

The method has been elaborated on a manifdlih the context of string theory [27].

The bosonization or§? is particularly unamabiguous, sustaining the absolute rigour.
QED; on St was first studied by Nakawaki [28] and has been developed by many authors
[29-31]. It was simplified in [30], which we follow here.

In this section we present a brief review of the method, applying it to the system (1.1).
Although the essence is well known in the literature, subtle factors associated with the multi-
flavour nature and implementation of arbitrary boundary conditions are worth spelling out.
With a clever choice of Klein factors the Hamiltonian of tNeflavour Schwinger model is
transformed into a surprisingly simple bosonized form.

We note that theV-flavour Schwinger model has been analysed in [26, 10, 11, 32]. The
model at finite temperature, which is equivalent to the modefhrhas been analysed in
[33]. The model on other manifolds have also been investigated in [34]. The conformal
field theory approach to QEDhas been proposed by Itoi and Mukaida [35], which has
many features in common with our bosonization approach. Correlators of various physical
guantities have been discussed in [36].

Bosonization of an arbitrary number of fermions on a circle<{Qx < L) obeying
boundary conditions

Yalt,x + L) = €%y, (1, x) a=1~N (2.1)
is first carried out in the interaction picture defined by free massless fermigag: + 0
[26, 4]. We introduce bosonic variables:

lof, ph1 =18 lal,,all] =88

all other commutators= O

(2.2)
¢ai(t’ )C) Z {aj: 727'[In(t:tx)/L +he. }
\/_ n
In terms of these varlable,ss; = (¥¢,¥2) can be expressed as [27]
1 ; «
1//:a‘:(t7 )C) _ Cae:t {qi+2rnps(t+x)/L} e:tlmqbi(z‘,x) :
VL
1 . _
— 4= gtilgi+2mplEn)/L) ca :eﬂmayg(z,x) : (2.3)
VL *

where the Klein factors are given by [10]

a—1
Ci = exp{irr Z(pi +pb - Zab)}
b=1 (2.4)

CcY = exp{in Z(pi — p}j)}.
b=1
This choice of Klein factors turns out to be very convenient. They satisfy

C(l Ctl
[ } YiL(x) = signb > )y (x) [ Cﬂ
—+

C ce (2.5)
cat wi(x) = sign(b > a)l/fi(x) cat
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where sigiiA) is defined to be+1 (—1), when A is true (false). By construction
(& Fa)YL(t, x) =0, i.e.y, satisfies a free massless Dirac equatigrfdg+y1d1)y¢ =0
wherey* = (01, i0) andy® = %! = —o3.

Under a translation along the circle

Yot x + L) = =€ Piyl(r, x) = — (1, x)ETPE (2.6)
so that the boundary condition (1.2) is ensured by a physical state condition
74| phys) = €| phys). 2.7)

Further conditions can be consistently imposed on physical states such that the Klein factors
act in physical space as a semi-identity operai6f:phys = (+ or —)|phys. We shall
see below that the Hamiltonian commutes with — p“.

The fields{y{ (x)} satisfies desired equal-time anti-commutation relations. With the aid
of (2.5), (B.1) and (B.2), it is straightforward to show

(W8, W5} = 5908, @7 /L @TPCI/Lg (x — )

2.8
others=0 28)

wherea, B = + or —. Notice that the extra phase factors in (2.8) manifest the translation
property (2.6). The bosonization in the interaction picture is defined by (2.3) and (2.7).

In applying the bosonization method to the model (1.1), it is most convenient to take
the Coulomb gauge

Ax(t, x) = b(r)

L
Ao(t, x) = — /0 dy G(x = jeu(.y)  jew = ;eawiwa 2.9)

2
Gx+L)=Gx) —Gx) =68(x) — l

dx? L
in which the zero modeé(r) of Ai(z, x) is the only physical degree of freedom associated
with the gauge fields. The Hamiltonian is given by

1 L - . - _
H= ZP,?+/ de Y {Pay (—ids + eab)Va + M VarVar + myVarVar)
0 a

L
-1 /0 dx dy j2u ()G x — ) j2uO). (2.10)

Here P, is the momentum conjugate to P, = Lb. The antisymmetrization of fermion
operators is understood.

At all stages of bosonization, the gauge invariance must be maintained. Due caution is
necessary in bosonizing a product of two field operators at the same point as it has to be
regularized. At equal time the bosonization formula (2.3) leads to

e bv—r) Lt 4 4 1 P . 2w ps 4
g bty )E[I/Ii(y)T: vi()] = o {x = +1 ( 2 = +€ubi‘/4773y¢i) +@x =y

21 (27pt VAT 929
[” ——:(ﬂpi+eab:|:\/4n8y¢i> LA

6L2 2 L 2 9y2
(2.11)

Gauge-invariant regularization amounts to dropping Byéx — y) term.
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Hence we have

r— 1 [(2nps u
E[ iT,Wi]zq:E( Li +eab:|:v4n8x¢i>
1 T
at _
iz[lﬁi , (10 — eaD)Yi] = 172
1 [(2nps 2 i,
— b VAT, 05 | F——0%¢" 2.12
+47T ( 7 +e T y¢:ﬁ:> :Fm P ( )
1 T
; at . ay _
iz[(—lax —eb)Yy, Yi] = 122
1 [2npe 2 i
— Wb VAT, 05 | E——=0%¢¢.
+47T ( 7 +e T )¢:t> m Mo
In particular, currents are given by
. 1 at 1 aif _pa +pi 1
=4S v+ Sy = - 4
2 2 L Nz
1 4 1 4 +p4 + p b 1 (213)
il a a a a + -
Ja = _E[‘/f+ ’ 1/’+] + E[I/f_ s ‘/f_] = T + ea; + ﬁat%

whereg, = ¢ + ¢. In terms of¢, = Pur + ¢o— Whered,o = (4m)~Y2[q¢ + 27 pl(t +
x)/L]+ ¢4, the current takes a simpler form

1 . b
i 3By + 5115 (2.14)

=7 7
In the following discussions, however, we shall find that treating the zero-mode and

oscillatory-mode parts separately is more convenient.
The kinetic energy term is transformed to

iy D1 = [T, D] — (Dol ] — [yl Dyye] + [Pyl pe)

4
b4 1 2rpg 2
= ——+—" b+ VAT Pl )
612 1 ax ( [ btV ¢+)
1 2 p° 2
+E‘< L’" +eab—\/47r8x¢>"> . (2.15)

Putting all things together, we find

H = Hy + H¢> + Hmass

N P? 1 & e.bL\?
Hoy= ———_ b el a _ aN2 a a a

Lo (& i (2.16)
H¢=/O dxéi{Z(¢f+¢f)+M2¢2}i
a=1
1

52
2 2 _ € - €4
pr=d d=— =) —d
T T " e
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where Hpassrepresents the fermion mass term. It is convenient to express the Hamiltonian
in terms of

qa =4q5 +q° Pa = 3(pL+ p*)
do=3@"—q%)  pa=pL—p° 2.17)
(94> Po] = [das Pb] = (8ap all others= 0.
Hy becomes
N  P? 1
Ho=—or + o7+ 5= > {(eabL +21p)* + 7*5). 2.18
°=~%r t2r T 2L ;{(6 +27pa)” + 77 pi) (2.18)

A few important conclusions can be drawn in the massless fermion éagsgs& 0).
The zero-mode parHy and oscillatory partd, decouple from each other. Each part is
bilinear in operators so that the Hamiltonian is solvable. The oscillatory part consists of
one massive bosonp) with a massu and N — 1 massless bosons. The zero-mode part

must be solved with the physical state condition
le[iPi| phyS) — eZnioz,l| phyS)
O™ phys) = — > e, | phys) = 0. (2.19)

3. 6-vacuum

When all ratios of various charges are rational, there resultséavacuum. In this paper
we restrict ourselves to the case in which all fermions have the same clargez. It is
appropriate to introduce the Wilson line phadg :

O =ebL @OV = gely drasin), (3.1)
The zero-mode part of the Hamiltonian (2.18) becomes

aN  wulL 2 1 & 2 22
Ho=—— ¢ 27 Py 3.2
o=—%5 + on an;“OW 7 pa)® + w2 i) (3.2)

whereu? = Ne?/m and Py = Oy /€L is the conjugate momentum ®y,. In terms of
the new variables
2 2
/@ r_
®W—OW+N§ Pa qa—QH""NPW

(O, Pw] =i [9,. Pb] =184 others= 0

(3.3)

the Hamiltonian becomes
N 7wl 2 N s 27 2 on 0 1.,
Hy=——— P e, — — » — - . 3.4
°=T%L Ty VT 2eLOv T WL Xa:p i g 34
There appears an additional symmet®y, p,) — (—Ow, —p,) whena, =0 and%. The
Hamiltonian is invariant under

Ow — Oy + 27 Pa— pa—1 (3.5)

or equivalently, in terms of the original fields,

1 , 2
Ay — A+ 20,8 Yoo by A= Tx (3.6)
e
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The transformation is generated by a unitary operator
U = d@Pvia) — dXa,
[U, H] =0.

In a vector-like theoryp, = p¢ — p? takes integer eigenvalues. Furthgy [H] = 0.
We can restrict ourselves to states wjth = 0 as the energy is minimized there. The
vacuum state is written as a direct product of ground states of the zero-mode sector and
oscillatory-mode ¢) sector. The ground state in the oscillatory-mode sector is defined with
respect to physical boson massess. As we shall see, the ground-state wavefunction in
the zero-mode sector affects the physical boson masses, and vice versa. These two must
be determined self-consistently. Note that if there is a background ch@yge £ 0) as in
the case of spin chains, then) e, p, = —Qp.,..

With this understanding the vacuum wavefunction is written as

(3.7)

[Wyac) 2/ dpw Z Ipw, 1, 1) f(pw, 1, ra) (3.8)

{n,rq}

where|pw, n, r,) is an eigenstate oPy and p,:
Pwlpw,n,ra) = pwlpw,n, ra)

n+ry+a)lpw,n, ry) fora < N (3.9

a s N, Tg) =
Palpw ) {(n+aN)|pW,n,ra) fora = N.

It follows that
& pw, n, 1) = |pw + k,n, 1)

i |pw,n, rp £ 8b.4) fora <N (3.10)
eiqa|van’rb) =
lpw.n£1,r, F1) fora=N.

SinceU in (3.7) commutes with the Hamiltonian, one can take
U|Wyac(6)) = €| Wyac(6)). (3.11)

As Ulpw.n,rs) = € py.n + 1 r,), one finds f(pw,n,r,) = e nf+2rictapy
f(pw,rs) wherea = NN o,

This is thef-vacuum. The existence of the operatdrwas suspected long ago in [2],
though its explicit form was not given. On a circlé,is unambiguously written in terms of
Py andg,’s. This definition was first given in [30]. In passing, it has been noticed recently
that a similar definition of thé@-vacuum arises in the framework of light-cone quantization
of the Schwinger model [18, 19].

It is convenient to adopt a coherent state basis given by

1 .
|pW, n, §0u> = m Z e—l(VlWl+-..+rN—1</7N—l)|pW’ n, ra). (312)
{ra}

Then

1 . o
|Wvac(0)) = Vo Z/ dpw [de]lpw, n, )& " HZEONY F(py )
A _ 1 o Erete 7 (3.13)
f(pw,@d) = m Z f(pw,ra).

{ra}
The normalization igWyac(6)|Wvac(f)) = 82, (8’ — 6) and [ dpy [d<p]|f|2 =1.
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The function f(pw,¢.) is determined by solving the eigenvalue equation
Hiot|Wyac(0)) = Evac|Wvac(9)). We write, for an operatoQ = Q(Ow, Pw, pa),

0| Wyac()) = / dpw [de]| pw, n, g,)e 02O G F(py . g,). (3.14)

1
7o

Noticing Ow|pw, n, ¢,) = —i(3/3pw)|pw, n, ¢.), one finds that

21 & . 9 2n = 9
0=0y+ — pa:>Q=i{——— } (315)
N ; dpw N (= 99
The operatotH, corresponding taH is
. N Lp? N (a8 2tF 8V 2r(vN-1
Hp= 22 4 &2Pw =y —MAW (3.16)
6L 2 2L \dpw N ‘= 3¢, NL

a=

Here thep-Laplacian is given by

N—-1 9 . 2 2 N-1 P ) P )
By = Z <a% - I’B") N-1 Z (8% a Iﬂa) (3_% - I'Bb) (3.17)

a=1 a<b

whereg, = a, — ay.
The mass operator in the Sdkiinger picture is

My, =9y = —cicy - e e LT NG VT (3.18)

where the normal orderingyy[ ] is defined with respect to massless fields. In the presence
of Hmass all boson fields(¢) become massive. We denote a mass eigenstate with a mass

Ko BY Xo
Xoe = Unata U'v =1 (319)
The vacuum is defined with respect to thegefields.
With the aid of (B.7), the mass operator becomes

N
M3, = —ctce . e ziritde’ 71BN, [6Ve4m]

a=1
B N , (3.20)
B, = 1_[ B(MQL)(UM) )
a=1
Further
(p/Wv n/7 ¢/|eiiq‘, |pW1 n, (P>
3(p| )Iﬁa (0 — 9») el fora =N (3.21)
=o(Ppy — P 21 (@ — Ob ) .
" " b=1 ’ 8n’,n:ﬁ:j|_e:':I 209 fora=N
so that
ot A gtivn fora < N
0= = 0 = eﬂ:i(e—Zwb—Zﬂpw) fora— N. (322)
Let us write a fermion mass as, = |m,|€% and drop the absolute value sign

henceforth. ThemHmass = [ dx >, ma(M,€% + h.c.). When Hpass acts ofWy.(0)),
in general both zero-modes apg fields are excited. In deriving an equation f6¢pw , ¢),
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we ignore thosey -excitations, with the understanding that physical magsges are taken.
Then
A N_l _ -
Hiass= — Y 2m, B, COSg, + 8,) — 2my By cos(@ =Y o —2mpw + 3N>. (3.23)
a=1

f(PWa ©q) must Satisry]:[totf(PW» ©a) = Evacf(l’Wv ®a) Wherel:ltot = I'}O + I:Imass
At this stage we recognize that it is appropriate to introduce

o 2
fpw,va) = f (pw, Pa — All)w - Sa). (3.24)
The eigenvalue equatioH: f (pw, ¢u) = Evacf (pw, ¢«) NOW reads
N\ 92
N5z ) = N =DA,+ V(pw.®) { f(pw,9) =€f(pw,¢) (3.25)
2r ) 3py,

wheree = (NLEac/27) + (1 N?/12). The potential is given by

(ML)Z N N = 27TpW
Vipw,9) = +—, Py — =Y _maLB,cos| ¢, —

7 a=1 N
B (3.26)
N-1 N
§0N=9eﬂ_z¢a eeﬁze‘i‘zaa.
a=1 a=1
The vacuum is
1
[Wyac(0)) = N Xn:/ dpw [de]lpw, n, @a)
ing+2ri(n+@) pw 2 pw
xe f Pws Pa + N +3a . (327)

The problem has been reduced to solving the &dinger equation folN degrees of freedom.

4. Boson masses and condensates

In deriving the equation (3.25) for the vacuum wavefunctftipy, ¢), we have supposed
that we already know the massgg’s of the boson fieldg,’s. In this section we show
how theseu,’s are related to the vacuum wavefunctigpy, ¢) itself. Hence we obtain a
self-consistency condition for the vacuum. Along the way we shall also find that the chiral
condensatéy, v, ) is related tou,’s.

From (3.22) it follows that

(€59)y = lim (Wyac(®)]€"% | Wvac(0))/ (Wrac(®) | Prac(6))
_ e:FizS,, (ei:i(qo,ﬁZﬂPW/N))f (4.1)
wheregy is defined in (3.26) and thg-average is given byF), = [ dpw [de] F|f?. In

our approximation schem@/,,), = —(B,/L)(€%),, and therefore

_ 2 - 2
(Favraly = =7 B <cos(¢a - ”;;W —sa)> . (4.2)
f

Rigorously speaking, the formula (4.2) is valid only for small Adam has determined
the condensate to @{ in mass perturbation theory in thé = 1 case [14]. Although the
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formula (4.2) incorporates some of the effects of a fermion magisoughB, and f(¢), it
does not incorporate higher-order radiative corrections which become important for a large
m > . We shall see that our formula gives a fairly good agreement with the lattice result
form < u inthe N = 1 case. Adam’s mass perturbation theory failsdoe 0.5u [20].

There is ambiguity in the definition of the composite operatafr(x). It diverges in
perturbation theory. It has to be normalized such thiat) = 0 in a free theoryd = 0) in
the infinite-volume limit £ — o0). In other words

(1/_/a1//a>0 = (1/_/411[/64)/0 - (@a%)ﬁee (43)

The values of(,.,), and (¥, ¥.)4e. depend on the regularization method employed,
but the difference does not. In our regularization scheme we shall (@, )t =
—&m, /. (See (7.3).)

The fermion mass terntfnass = J dx Za{maei‘%Maa + (h.c.)} has many effects. In
addition to giving a ‘potential’ in the zero-mode sector as discussed in the previous section,
it also gives mass termsx(x2) and other interactions. It follows from (3.20) that

1 - N .
Hmass= —zf dx Z {maBa(é(%anw)/N)f 1_[ N, [e|Uuade] + (h.C.)}. (4.4)
a a=1

When fermion masses are small compared with the coupling constant, it is legitimate
to expandHmassin power series of,. We define

. 8 _ :
Ry +il, = T”maBa (W 2mrw/N)y (4.5)
It follows that
1 1
Hmass= / dx { + E Xa: Xu: XeUaala + E ; Xa: XaUaaRaU(;ﬂXﬂ}' (46)

Including the additional mass term coming from the Coulomb interaction, one finds

) 1 1
Hmass= dx +ﬁXaUaala + EXaKotﬂXﬂ

I (4.7
Kop = — UyaU UyoUgaR,.
=N azb: po+ Za: B
U,.'s are determined such that,s = 14128,5. In other words, we diagonalize
) 1 .- 1 Ry
K=—1|: = |+ .
N
1 ..-1 Ry .8)
1 '
K =UKU' =
u

The set of equations (3.20), (3.25), (4.5), and (4.8) needs to be solved simultaneously. This
is a Hartree—Fock approximation applied to the zero-mode and oscillatory-mode sectors.
We call it the generalized Hartree—Fock approximation

In terms of R, the chiral condensates are, in the cdgse-= 0, mu(xﬁawa); = —R,/4r.
Equations (4.8) and (4.3) relate boson masses to chiral condensates. It is a part of the PCAC
(partially conserved axial currents) relations.

As fermion masses become larger, nonlinear terms({) in Hnass become relevant.
The boson masses are not simply given by (4.8). Improvement is necessary.
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04 4

0.3 / g

T / m=0.1 ]

<P/
\
3

W01 b / -

K- i E

‘3(3 £, i S
0.0 0.1 1 10 100
T/u

Figure 1. Temperature-dependence of the chiral condensate invtke 1 model atd = 0.
There appears crossover transition arolig = 1.

5. Massless fermionsd, = o)

When all fermions are massless and satisfy the same boundary condijtiens, the model
is exactly solvable. In this case equation (3.25) reduces to

N\ 92 L)
{_< ) +upﬁ,—(N—l)A¢ f(pw, @) =€f (pw, ®)

2 ap? 4
v (5.1)
N-1 32 2 N-1 82
A, = —_— = .
¢ ; dpz N-1 ; 3900
The ground-state, or the vacuum, wavefunction is independept.oft is given by
f(pw, ) = constant. e HLPi /2N (5.2)
The boson mass spectrum is given oy = u = v/Ne/m anduz = -+ = uy = 0.
The orthogonal matrix/ in (3.19) haslUy, = 1/+/N and B, in (3.20) is
B, = B = B(uL)YV. (5.3)

For N > 2, (cod¢, — 2npw/N)); = 0 in (4.2) asf(pw, ¢) is independent of,. The

chiral condensatéy, v, ), vanishes forN > 2, reflecting Coleman’s theorem which states
that in two dimensions a continuous symmetry cannot be spontaneously broken [37]. The
nonvanishing(y,¥.), breaks theSU(N) chiral symmetry. ForN = 1 the U(1) chiral
symmetry is broken by anomaly. Recallipg = 6 in (3.26) for N = 1, we have

2
_= —7/ L _
Fathaly = LB(ML)G *= cosh forN =1 (5.4)

0 for N > 2.
The condensate faV = 1 is plotted in figure 1.
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The SU(N) invariant condensate is nonvanishing, however. It follows from (3.10) that

N N-1
(P’ @] exp( +i qa) |pw. . @) = Swurad(Py — pw) [ | 82 (¢ — 0. (5.5)
a=1 a=1

Straightforward calculations in the Séllinger picture yield

N
(UNL - Y YiR - YUNR)G = <T> (g2 q”No[eimm])e

N
= [%ﬂl‘)} e fg N/l (5.6)

In the infinite-volume limit it approaches &(—ue” /47)V.

6. Truncation

There are two potential terms in the equation fipw, ¢), equation (3.25). If fermion
masses are small compareditpone of them,(ML)Zpa,/4, dominates over the other term
in V(pw, ¢). The condition isn, B, <« u?L. Form, < u, it is satisfied whemL > m/u
(T/pn < p/m).

In such a situationPy, acts as a fast variable, whereas #hés act as slow variables.
The wavefunction can be approximated ypw, ¢) = > oo us(pw) fs (@) ~ u(pw) f(9)
whereu(pw) = uo(pw) is

N\? d? L)? NulL
{—( ) +(“)pév}u<pw)= P2 wipw)

27 ) dp? 4 A
Pw (6.1)
nL v Lp?, /2N
u(pw) = (W) g TLpw /2N
The cosine term iVy (pw, ¢) is approximated by
2 2
cos(q)a - n]f])W) N / dpw cos(wa - n]\fw) u(pw)? = eVl cosg,. (6.2)

We remark that the truncated equation has symmejry—> — pyw, although the original
equation does not in general. The truncation may not be good for physical quantities
sensitive to this symmetry.

The function f (¢) satisfies

{(=(N=DAy,+ VN(p)} f(p) = €0 f(9)
NL N (6.3)
—__ —7/NuL B
Vi (9) —e ;m 4 COSg.
This equation has been extensively studied inthe- 2 and N = 3 cases in [10, 11].
Let us denote(F (¢))); = [[dp] F(¢)| f(¢)|%. Then (4.1) and (4.5) become
(eiiqa>0 — gTid —ﬂ/NﬂL<<eii<ﬂa>>f

_ 8 _ ) (6.4)
Ry +il, = —-myB,e™/Mh () .

All formulae in section 4 remain intact with these substitutions. In particular, the chiral
condensate satisfié®,v¥,), = —R,/4wm,.
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7. N =1 massive case

7.1. Generalized Hartree—Fock approximation

With one fermion there is n@ degree of freedom. We writei; = m, 81 = 0, 01 = «.
Recall thatu = e//7 andg; = fe. The vacuum wavefunction is determined by

1 . .
|[Wyac(@)) = E Zf de |pW7 n)e—ln9+2m(n+(x)PWf(pW)

7.1
T 1 T N DO
(M)de%} 4 Pw = TPw eit) S (Pw) = €f (pw).
Whenm « u, the boson masg; must satisfy
8rmB(u1L
ui=p®+ ¢<COS(2WW —0));- (7.2)

L

As m becomes larger, the formula (7.2) needs to be improved to incorporate nonlinear
effects in the fermion mass. In particular,u; = 2m + O(e?/m) for m > u, as the boson
is interpreted as a fermion—antifermion bound state.

In determining a physical chiral condensate, one needs to subtract a condensate in free
theory as discussed in section 4. The ‘free’ limit corresponds to the #imit . At the
moment we do not have reliable formulae which relaiem, and(y ), for m > u. The
best we can do is to extrapolate (4.2) and (7.2) for largéo determine the subtraction
term within our approximation.

It follows from (7.1) that in the weak coupling/m <« 1 and infinite volumeL — oo
limits (cos2rpw — 0)), = 1. If the formula (7.2) is employed, one obtaipng = 2€'m.
Combined with (4.2), it gives

_ e
(V) ree = —?m. (7.3)
The chiral condensate is therefore given by
_ 2B(u1L e
(Wir)e = —#(Coﬂﬂpw =)y —m (7.4)

which we expect to be a good approximation far < p. We stress that within our
approximation the subtraction term is given by (7.3). In an exact treatment the boson mass
in the weak coupling limit should be given y; = 2m. To achieve this, one has to
improve both (4.2) and (7.2) consistently.

In the massless cage: = 0), (V)70 = —2L~1B(uL)e™/*L cosh. In the infinite-
volume limit or zero-temperature limit, it approachesgue’ /2) coss.

It may be of interest to apply a perturbation theory [12] to (7.1) wherg u. Write
(7.1) in the form

(Ho+ V)W) = E|W¥)
Ho=2npL(a'a+3) (7.5)
V = —k coL2rpy — 0) k =4amLB(u1l)

where the annihilation and creation operators are

(Z) = %2 <i\/%wdpiw +mulL PW) : (7.6)
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In terms of number eigenstatés), |V) is found to be, to Of/u),

1 &1
7 > = In)(n|V10). (7.7)

n=1 n

W) =10) -

Since co&rpy —6) = te /1l (e e dee h.c.) wherea = (2/uL)Y?, it follows
that ( cos2wpy — )" = e~"/1L cosf and

K X1
(cos2mpy — 0)) = > =10l cos2mpw — 0)[n)[?
: Tl —n
- K gL i—1+ (ZD)"cos? (2m \'
2rulL ~ n-nl uL
2 /uL e —1 2 /uL et _1
= Le‘Z”/“L{/ dz +cos£/ dz }
27T,LLL 0 Z 0 Z
—e®1-cosm)  foruL>1 (7.8)
"

The boson masg; = u + Su is obtained from (7.2):

4
S = —jsz(ML)e*”/ﬂL cosh + Om?/u?)
m

~ mée’ cosh for uL > 1. (7.9)

The chiral condensate is given by

- 2 2
W)y = — 7 (B(uL) + B'(uL)suL}e ™/ cosh — = B(uL){cos2rpy — 0));

& e
= — —pucosh + —(—3+cosP)m for uL > 1. (7.10)
2 4
With (7.3)
. e 24
(V) ~ —=—pncosd + — (1 + cos D)m. (7.12)
2 Vb

This result differs from the result in the mass perturbation theory for the reason explained
above and should not be taken seriously. Our formalism, however, allows us to estimate
(V¥)mee and therefore the physical condensafe)),. The mass perturbation theory is
valid only for smallm/u <« 1, whereas our formalism allows the numerical evaluation

of various physical quantities even for/u ~ 1. We shall see below a good agreement
between ours and the lattice gauge theory in the ramge < 1. See section (7.3) below.

7.2. Mass perturbation theory

Corrections can be evaluated in a power seriesijla. This analysis was carried out at
zero temperature by Adam [14]. We present the analysis at finite temperature.

We illustrate the computation for the chiral condensate. Reaall =
—B(uL)L™Y(€'K, + e “K_) where K, = etV4e”gtivVars™  \We have suppressed
irrelevant factors. In the invariant perturbation theory

2
G =i | 22D [ i 57 (rieem O TIK, 0K O (7.12)

L a,b=+
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Making use of (C.5) and the identityg*¢”’®ghs”' My = gebls 6701 one finds

_ 2i . .
I = —'—TBWL)Ze—Z”/“L / P (€79 1) + cos BT - 1))
e iwt+ippx (713)

Gx) = Z/ da) e

The disconnected component has been subtracted. Deformingritegral to the imaginary
axis, one finds

- m _
W) = ——Bpl)%e @b

00 2
x f dr [ dx{(e"F@HHEZD 1) 4 cos B (e FHEAT — 1))

0 0 (7.14)

=[F,.(uL) + F_(uL)cos D]m
1 T = 1 @ Ut 2 2\1/2
E(t,x;z2) = —eZ +ZZ "t cosnx v, = (n® + zH)Y2
n=1 Un

The coefficientF_(uL) is finite, whereasF, («L) diverges logarithmically near =
x = 0. The divergence is due to the ) correction in the freee(= 0) theory, which must
be subtracted to define the physical chiral condensate as explained in section 4. Hence in
the mass perturbation theory

(), = —%u cosh + m[Fy(uL) — Ffee+ F_(uL)cos®] +---. (7.15)

F_Eee is obtained in a similar manner. One starts with a massless free fermion theory. In
the bosonization method the vacuum satisfiegac) = 0. Since(e*'?) = 0, the condensate
vanishes;(y¥¥) = 0. The fermion mass is treated as a perturbation. Ta)Oone gets

an expression which is the same as (7.12) except BiatL) is replaced by 1 and(x)
represents a massless field. Making use of (C.2), one finds that

D = 2im @y @ 27il/L i Grree(x) (7.16)

free — L2
where Gaee(x) = —i(T[¢(x)¢(0)]) is a massless propagator excluding the contribution
from the zero mode. Employing (B.1) and deforming the integration path, one finds

1 e’

(Y )iee = — / de / & A e = mFIee, (7.17)
Notice that ™ is independent ofL. Comparing (7.17) with (7.14), we observe that
Firee — F+(uL>|,LLﬁo

F_(uL) can be easily evaluated by numerical integration. p4t/2r = 10 ~ 50,
F_ = 0.357. This is consistent with the number, 0.3581, obtained by Adam in the
L — oo limit. The divergence inF, («L) and Ffee makes the evaluation of the difference
very difficult. We comment that Adam’s subtraction procedure to get fimﬁée is
inconsistent. Indeed, his massless propagator differs from that obtained by taking the
w — 0 limit of the massive propagator in [14]. Further, his numerical estima®e391 26,
for F.(oc0) — Ffee disagrees with the lattice result. At = 0 Adam’s estimate gives
Fi(c0) — Ff™®® + F_(00) = —0.0345 < 0 in equation (7.15), which contradicts with the
recent result from the lattice gauge theory. (See figure 2.) There is a disagreement in the
sign.
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Figure 2. The mass-dependence of the chiral condensate irvtke 1 model atd = 0 with
various values of temperatur. In the figureT is in a unit of x. The lattice data, which
corresponds t@” = 0, is by de Forcranét al [23]. The additional lattice data point at/u = 2
was provided by the authors of [23]. The condensateTipr < 0.1 is essentially the same
as that atT = 0. The curve for7/u = 0.003 is consistent with the result by Tomachi and
Fujita [16].

7.3. Numerical evaluation in the generalized Hartree—Fock approximation

In this section we present various results obtained by numerical evaluation. The algorithm
is simple. With givenuL, m/u, andfex, we start with an initiaje; /. Then equation (7.1)

is solved numerically to fingf (pw). With this f(pw), a newus/u is determined by (7.2).

We have a mapping

n1—> f(pw) — p1. (7.18)

We repeat this process until the output coincides with the inpufw; within required
accuracy. Withu, being fixed, the condensate is evaluated by (7.4).

In figure 2 them-dependence of the condensate is plotted at0 with various values
of T/u. The lattice result from [23] is also plotted for comparison. Our result agrees
well with Tomachi and Fujita’'s evaluation by the Bogoliubov transformation [16]. The
agreement with the lattice result is modest. Note that the subtraction of condensates in free
theory in each regularization scheme is crucial.

There appears a singularity in thedependence of the condensate whés close tar.
In figure 3 the condensates are plotted with various valugs dthe discontinuity appears
atm/u = 0.44 for6 =z, and atm/u = 0.40 for 6 = 0.95x.

The discontinuity persists as long as the temperature is lower than 0.12u. The
condensate at various values®fis depicted in figure 4.

The origin of the discontinuity is understood as follows [12]. dr >> 1 equation (7.1)
becomes
{ 1 & (wL)?> ,  muiL?e

- (27)2 dp%v 4 Pw — T a2 co2rpw — eeff)} f(pw) =€f(pw). (7.19)
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Figure 3. The mass-dependence of the chiral condensate invthe 1 model nea® = = at
T/ = 0.003. There appears a discontinuity abéve 0.95z. The condensate at= 0 is also
displayed for comparison.
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Figure 4. The mass-dependence of the chiral condensate invthe 1 model atd = = at
various values off' /u. For T/u < 0.12 the discontinuity remains, whereas the transition
becomes smooth fdf /. > 0.12.

The potential term dominates over the kinetic energy term. Suppos&dhat .
Then the wavefunction is sharply localized around the absolute minimurﬁ(ptv) =
(T upw)? + mur€’ co2zpy). There is always a solution for which? > 2€’mpus. In
this caseV (pw) is minimized atpy = 0 andu; = /2 + m2€ — me’. There is another
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solution form/u > 0.435, oru? < 2&’mus. V(pw) is minimized atpy = py where
27 pw = (2mu1€” /u?) sin 27 py. The boson mass is given by, = /2 + a?2 — a where
a = mée”’ cos 2t py. The second solution has a lower energy density and corresponds to the
vacuum. Hence af = L~! = 0, there appears a discontinuityrat/u = 0.435.

At finite temperature the critical value./u is determined numericallyn,./u = 0.437
at T/u = 0.03. The discontinuity disappears f@r/u > 0.12. As noted in [12] there
are two possible scenarios. In the full theory the discontinuity may persist, but with a
universalm./u independent off’ /. Or the discontinuity may be smoothed by higher-
order corrections. At the moment we do not know for sure which picture is correct.

8. Degenerate fermions

When all fermions have degenerate masses & m) and obey the same boundary
conditions o, = «, the LaplacianA, and potential Vy(pw, ¢) in the eigenvalue
equation (3.25) become

N-1 92 2 N-1 92
A‘”Z;ng_zv—lza%a%
V(pw. @) = +(Mj)2 g, MmL? XN; ( n]\i)w> oY
B = B(u1L)" B(u2L)"™ “/N).
Boson masseg; andu, = --- = uy are determined by (4.5)—(4.8);
wi=p?+R  pi=R
R = 871213 <cos<<pa - 277}5w)>f‘ 8.2
WhenuL, uiL, uoL > 1, the potential is approximated by
Voo = 417;22 {(nupw) — Ne”mul/N,u(zN DIN ; COS((pa — ZT]\];W )} (8.3)

If fermion masses are smail/u <« 1, the first term in the potential dominates over the
second. Thepy-dependence of the wavefunction is the same as in the massless case, and
one can writef (pw, @) = e "*LPI/2N £(4). With the aid of the truncation formula (6.2)
the equation is reduced to

{(=Ay +Fn(p)}f(p) =€ f(p)

= ——  mLBe /Nt Fx(p) = — ﬁ:cos 84)
- JT(N — 1) N(@) = Pa -
The boson masg; is given by
8tmB 771 8m2(N — 1)
up = ——e M ((cosp,))p = —— K ({COSpa)) (8.5)

Inthe L — oo or T — 0 limit, the wavefunction has a sharp peak at the location of
the minimum of Vo, (pw, ¢) in (8.3) or Fy(¢) in (8.4). We examine the location of the
minimum of the potential.
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8.1. Potential
@N=2
In the two-flavour case: = ¢, ¢ = 6 — ¢ and the potential takes the form of
_ L? 2 12 172 0 0
Voo (Pw. 9) = 75 1 (Tupw)” — 4€'muy "y " cos| wpw — 5 | €os{ ¢ — 7 (8.6)
or
0 0
F(p) = -2 cosE COS<(p — E) . (8.7)

The form of the potentiaV,, suggests that the anomalous behaviour analogous to that in the
N =1 case may develop neéar= 7 with m = O(u). Note that at¥ = £+x the truncated
equation (8.4) is not valid as the potentigl(¢) = 0. The py degree of freedom must be
retained.

F>(¢) has a minimum at
6
2

- 0
o= 9:6—271[ +”} 8.8)
2
where [] denotes a maximum integer not exceedingo that|#| < =. Notice that the
location of the minimum discontinuously change¥at = (mod 2r).
(b)y N =3

Let us examine the potentid(p).

F3(p) = — cog¢1 + ¢ — 0) — COSp1 — COSP;. (8.9)

The location of the minimum can be easily found analytically. There are six distinct
stationary pointsipy = ¢, = 160, 2(0 & 27), or (p1,¢2) = (0 + 7,0 + 7), (0 + 7, —0),
(—=6,6 + ). The global minimum is located & = ¢, = %9—. The periodicity inf is
2. The location of the minimum jumps frofys, ¢2) = (+37, +37) to (37, —3m) at
0 = (mod 2r). The minimum is always located &b1| = |¢2] < %7‘(.
(c) GeneralN

First notice that

N-1 N-1
Fy(g1,....¢n-1:0) = — ) _ COSp, — COS<9 - %)

a=1 =1
= Fy_1(@1, ..., on—2; 0 — @n_1) — COSpy_1. (8.10)

For N = 3 we know the minimum is located at = ¢, = 36.

ConsiderN = 4. We denote the minimum of, by (a1, az, az). Fix the value of
@3 and consideFa(¢)giixed = Galg1, ¢2). Denote the minimum o4 by (b1, b) where
bj = bj(p3). It follows from (8.10) that(by, b2) is the minimum of Fz(¢1, ¢2; 0 — @3).
The result in theN = 3 case implies thab; = b,. Since the minimum ofH;(¢p3) =
G4(b1[ @3], bo[es]; ¢3), which we denote byc, is the minimum of F4(¢), we have
[a1, az, a3] = [b1(c), b2(c), c]. In particular,a; = a, asbi = b,. We repeat the argument
with the value ofp; kept fixed, to obtairu, = az. Hencea; = ap = ags, i.e. the minimum
of F4(¢) occurs atp, = ¢.

By induction we conclude thay (¢) has the minimum ap, = ¢ (a=1,...,N —1).
It is easy to find the location of the minimum dfy(¢) = Fy(¢,...,¢;0). From the
symmetrygy =6 — (N — 1)¢ = ¢ (mod 2t), or ¢ = 6/N (mod 2r/N). Direct evaluation
of FN(go) shows that the minimum ofy (¢) is attained atp, = 6/N.
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8.2. Boson masses and condensates

In a few limiting cases boson masses and chiral condensates can be determined analytically.
In this section we suppose that fermion masses are smait © and analyse (8.4). The
wavefunction f (¢) is determined by two parametersand«. The chiral condensates are
related to the boson mass by

(Jfal//a)& = (&allfaye - (&a%)ﬁee

2 (8.11)
7 I ,LL2
(VaVa)y = yT—
@N=2
We suppose that # . Equation (8.4) becomes
o? 6
—F—KOCOS -5 fo)=¢€f(p)
¢ _ (8.12)
1. 4dmL 0
Ko = 2 cosée = 2 B(ua L) Y2 B(upL)Y2e /2 cos.
4
It is easy to see
Ko C0S20 = k(1 + cosh) for ko < 1
((cosp))yp =1 -2 (8.13)
cosz0 for ko> 1

and accordinglyusL //2w = ko or ko for kg < 1 or ko > 1, respectively. Hence one
finds form <« u

4/2m cosife /2t for uL < 1
_(e’'ul 1/2 _
12 =\ 4v/2m cosif ( o ) for uL > 1> (mcosz0)*3u'3L (8.14)
(2€'mu*’? cosin)? for (m cos30)?/3u*3L > 1.

Coleman obtainegk, o« m?311/3cos/3 26 in Minkowski spacetime long ago, [4] but the
overall coefficient was not determined. Note that if the massless limit is taken with a fixed
L, thenu, = O(m).

At 6 = 0 andL — oo, m-dependence ofi, has been determined in the lattice gauge
theory [22]. In this limit the formula (8.14) leads {o,/e = 25/5e?/3n*1/6(m/e)2/3 =
2.163(m/e)?® wheree and g are the coupling constant and Euler’s constant, respectively.
Smilga showed that the exact coefficient should H#08& for m/e <« 1 [38]. The lattice
simulation is done for/e < 0.5. The data supports the?3-dependence and indicates a
coefficient between the two numbers mentioned above.

(b) N > 3 flavour

Whenk > 1in equation (8.4), the wavefunction has a sharp peak at the global minimum
9. = 0/N, and thereforg(e¥)), = /",

For k « 1 we solve (8.4) in a power series in To O(1) a plane-wave solution
u(p; i) = @mevt-+nvaens satisfies—A%u = eu wheree is positive semidefinite and
vanishes only i1y = --- = ny_1 = 0. Hence to (°) f© = 1. To find O) correction,
we noteA%, Fy(¢) = —Fy(g), from which it follows thatf = 1 — « Fy(¢). Hence

K fork <« 1

{((cospa))y = 6 (8.15)
cosﬁ for « > 1.
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Notice that it is independent of for « < 1. It follows that [V/87*(N — 1)]*2u,L = «
for k <« 1 and= [k cog6/N)]*? for k > 1. The boson mass is determined from (8.5);

gy \12
(m) meﬁH/N“L fOI’ /,LL < 1
8N \"? (euL\"V
o = <m> m < 4“ > for wL > 1> mV/WN+D YW+ (8.16)
- b4
~  N/(N+D)
(Zé’mulm cosﬁ> for mN/WVFD  VWNAD 1 1,

9. General fermion masses

HN=2
It is of interest to know the boson masses when the fermion masses are not degenerate.
In the two-flavour case an analytic expression is obtainea:fot<  in the L — oo limit.
Start with (3.25), or more conveniently the truncated equation (6.3):
®* 2L I
— = — =& "m,B, cosp, { f(9) = €of (). (9.0)
dp?2 =« —~

Note thaty, = ¢ andg, = 6 — ¢. In terms ofR, = 87rmal_?uL’1e”/2“L((COS<pa))f,

ni\ [ w? +R1+R2
ns) —\ 0 2

(él) — B(uyL)Y2B(upL)Y2 [B(IML)

(9.2)

By B(uzL)
In the L — oo limit, B, « L so that ((cosp)), = cosgmin Where the potential
term in (9.1) has a minimum atm,. In general at the minimum of a functiog(y) =

—a CoSp — B Sing, € = (a +iB)//a?+ B2. Hence,

«B.)? BB, cost
R, = 87 (myBy)* 4+ mimaB1 B, cO 9.3)

\/(mlél)z + (m2B2)? + 2mym2 By B, cOSH

]i(Rle)/Z/f

where B, = B,/L. Solving (9.2) and (9.3) to the leading ordersin /i, one finds
m5 + mqmy COSH

Ro = 26757 (m% + m3 + 2mymy cosh) /3’ (9.4)
Consequently,
o = ezy/s,ulw(mi + m% + 2mymo cosf)/3 (9.5)
and
((@11#1)@) _ S (ml +my cos@) (9.6)
(Y22l 27t (m? + m3 + 2mymp cosH) /3 \ mz +m1cost )

In the symmetric caser; = my = m (9.5) reduces to (8.14).

Observe that there is no singularityéat 7 in a generic case; # m,. The boson mass
and chiral condensates are smooth function$ with a period 2Zr. The singularity appears
only whenm; = m, # 0 in the two-flavour case. In a special casg = 0 butmy, # 0
(ma2 < W), (Y1), (Yavr2)y) = —(2m)~L(€Y u?my)Y3(cosh, 1) in this approximation.
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(2N =3

The three-flavour case mimics physics of four-dimensional QCD. Three fermions, which
one may call ‘up’, ‘down’, and ‘strange’ quarks, have different massgs;> m, < ms.
We would like to see how the asymmetry in masses affects chiral condensates and boson
masses.

We concentrate on the — oo (T = 0) limit in the truncated theory. As in th¥ = 2
case one needs to find the location of the minimum of the potential

3

Vip) =~ maB,cosy, 9.7)

. T

g(p1, 2;0) = lim —
L—

a=1

o 3L2

where g3 = 6 — 91 — ¢». Here B,’s are determined by the boson masgess and
eigenvectors:

. g2 )
B == )
T Ax (!:[ll’l“a

2/1 1 1 Ry 5 9.8
K:%(l 1 1>+( R, ):U’( 12 )U ©8)
11 1 R3 %

R, = 8tm,B, cosp™"

a -

@™ is the location of the minimum of(¢). The set of equations (9.7) and (9.8) must be
solved simultaneously. Chiral condensates are given by

- - . e
(%%)9 = —-2B, COS(PZmn + 7ma~ (99)

When fermion masses are degenergff" = 14, as shown in section 8. A = =
the location of the minimum changes discontinuously, which induces singular behaviour in
physical quantities. We show that the singularity disappears if the asymmetry in fermion
masses is sufficiently large. In [11] this problem was analysed by examygipyg but
without solving (9.8).

Whenmy = my < m3, @1 = ¢, at the minimum ofg(¢). At =0, 91 = 9o = 0. As6
increasesy; = ¢, also increases. M = r it reachesp; = ¢, = ¢. whose value depends
onm,'s. As mz gets bigger and bigger witlk; = m, kept fixed, ¢, approache%n. For
instancep, = (0.467, 0.486,0.499 n for m1/u = 0.01 andms/u = (0.02,0.03,0.1). As
0 exceedsr, the minimum jumps t@; = ¢, = —¢. and returns t@; = ¢, = 0 atd = 2.

The singular behaviour & = 7 remains. This is expected ag > m; = m, corresponds
to the two-flavour case.

Now we add a small asymmetry in the light fermions. Figure 5 depicts the location of
the minimum ofg(¢) aso varies from—x to 7. A small asymmetry inn; andm,, does
not change the behaviour neae= 0, but significantly affects the behaviour néae +.

At (mq, mp, m3)/u = (0.01,0.011, 0.1) the minimum at¥ = = is very close, but not quite
equal, to f, 0). At (mq, mp, m3)/u = (0.01,0.02, 0.1) the minimum at¥ = x is located
at (r, 0), and the singularity in physical quantitieséat = disappears.

In figure 6 we have plotted boson masgas u,, and s as functions ob with given
fermion masses. They correspondg, m,, m, in QCD. Formy = my = m3 < W,
w1 > u2 = 3. Whenmy = my < ma < u, all u,'s are different. The-dependence of
eachu, has similar behaviouru,/u, w2/w, and us/w vary by 0.003, 0.007, and 0.1 in
magnitude. The mass of the lightest bosar, has the mosf-dependence.
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Figure 5. The location of the global minimum of the potential (9.7) in tNe= 3 model
with general fermion masses. Aschanges from-n to 7, the minimum in the figure moves
from left to right. The values for the fermion masses,’s, are in a unit ofu. The location
of the minimum discontinuously jumps ét= +x for (mj, mz, m3)/u = (0.01,0.01,0.1) or
(0.01,0.011, 0.1), but makes a continuous loop (.01, 0.02, 0.1).

1 s
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Figure 6. Boson masses in th€ = 3 model atl’ = 0 with degenerate fermiong; = ms = m3
and withm; = m» < m3. In the former case@; = u3. Fermion masses are in a unit pf

In figure 7 the#-dependence of the mass of the lightest boson is plotted for various
values of fermion masses. The cuspbat 7 persists as long am; = my, but a small
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Figure 7. The masspus, of the lightest boson in th&/ = 3 model atT = 0 for various values
of fermion masses. Fermion masses are in a unit.ofhe cusp ab = = disappears as a small
asymmetry in the two light fermions is added.

asymmetry inm, andm; changes it to smooth dependence. The masatd = 0 increases
as the third fermion gets heavier as expected, whereas it decreasesmat

The 6-dependence of the location of the minimumgfy) and the value of the mass
w3 of the lightest boson induces nontriviaddependence in the chiral condensatesy,),.

In figure 8 a chiral condensates fon,, m,, ms)/u = (0.01, 0.01, 0.01) and (0.01,0.01,0.1)
are depicted. In both cases there appear cusgs=atr. Notice that the magnitude of the
condensates @ = 0 is insensitive to fermion masses. This is true only if the ‘free theory
background’,@[n/x)}ree is subtracted in the definition of the condensate (9.9).

There appears, however, a big difference inakgependence of the condensates. When
(my1, mp, m3)/u = (0.01, 0.01, 0.1), the third fermionyrs is much heavier than the other
two. The condensat@)sys), is more or less independent 6f which is expected as the
vacuum structure is mainly determined by light fermions.

When a small asymmetry in light fermions is added, condensates suffer a big change.
See figure 9. With(my, m2, m3)/iu = (0.01,0.011, 0.1) the #-dependence ifyr1v1), is
enhanced, wheread»y), develops a dip nea# = 7. A small asymmetry inm; and
my induces a big difference ity1y1), and (V2y), neard = x. The nonlinearity in
equation (9.7) and (9.8) gives rise to such sensitive dependence.

It is interesting to recognize the similarity between the potergial) in (9.7) and the
effective chiral Lagrangian proposed by Witten to describe low-energy behaviour of four-
dimensional QCD [39]. In Witten’s approach

c

. 1 k .
ywitenyy = f2 {_5 TrM@U +U" + oy (—iindety — 9)2} (9.10)
where U is the pseudoscalar field matrix add = diag (my, mq, ms) is the quark mass
matrix. The second term represents contributions from instantoissO(1) in the largeV.
(colour) limit.
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Figure 8. The 0-dependence of the chiral condensates in she= 3 model at7 = 0. Two
cases,(m1, m2, m3)/u = (0.01,0.01,0.01) and (0.01, 0.01, 0.1), are displayed. In the latter
case the condensate of the heavy fermion has little dependengevdrereas the condensates
of the light fermions show large dependence.

00T (m1,m2, m3)
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Figure 9. The #-dependence of the chiral condensates in¥he- 3 model at7” = 0. Small
asymmetry is added to masses of light fermions. The effect is minor thearO, but the
condensates of the light fermions ne&ae 7 are significantly affected.

The fact thatm3 > m32, m%, m2 implies thatk/N. > m,. DiagonalizeU and denote
it by diag€?:, €%z, €%3). As the second term dominates over the fifs}¢, = 6 to the
first approximation. Withps eliminated, V\Wite"(¢/) takes the same form ag) in (9.7).
Consequently both models show qualitatively similar behaviour. Indeed, Witten has argued
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that a small asymmetry im, andmyg, in addition to large asymmetwys > m,, mq removes

the singularity of physical quantities # at 7z, which is exactly what we are observing in
the N = 3 Schwinger model. However, it should be noted that the coefficients in the
potential g(¢) have extra fermion mass-dependence coming from the fad@grsvhich
have significant effects near= r.

10. Summary

In this paper the massiv&/-flavour Schwinger model was analysed in the generalized
Hartree—Fock approximation. Dynamics of the zero-modes is determined by ttielBcfar
equation forN degrees of freedom. The potential term in the $dimger equation depends

on the boson spectrum in the oscillatory modes. The boson mass spectrum in turn depends
on the ground state in the zero-mode sector. The ground state of the two sectors must be
determined self-consistently.

We have evaluated the boson spectrum and chiral condensates M thel, 2, 3
models. In theN = 1 model we have found anomalous dependence of physical quantities
on the fermion mass ne@r = n at low temperature. In th&/ = 3 model physics near
6 = 7 is very sensitive to the small asymmetry in fermion masses. Chiral dynamics in the
N = 3 model resembles with that in QCD in four dimensions.
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Appendix A. Correlation functions

Green’s function for a scalar field with a magson S*, excluding the zero mode, is

> 1 2winx
Alx;pu, L) = Z TR TIAE cos . (A.1)

In the massless casg & 0) it is given by

1 21
A(x;0,L) = ™ In2 (1— cos%)
T

(A.2)

L 2 x
rAOL) T for |—— 1

27 x L <

In terms of

>, coS 2rnb
Is:a.b] = CosZinb. A.3
[s; a. 0] ;(n2+a2)s *

2nA(x; w, L) = I[3; uL/2m, x/L] and B(uL) = exp{—I[3; uL/2r, 0] + I[3; 0, O]}. For
b| <1

Ilsia.b] = /oo o SZP L o Ginen /oo o cosh &b
Y 0 (t2 + a2)s 2a2%s B (t2 _ aZ)s(ean _ 1)
JT cosh Zrbt
- m 2 __ aZ)s(QZnt _ 1)'

1
s—3

b

a

1 . o
KP%(ZnIabl) ~ o + Zsmsn/a dr 7
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(A.4)
The above formula is valid for an arbitrasyby analytic continuation.
It then follows that
T o coshuxu
2nA(x; u, L) =K (|y,x|)——+2/ du : A5
’ T e T W

Recalling thatKo(z) ~ —Inz —y +In2 for z « 1 and~ \/zzze*Z for z > 1, and noticing
for uL > 1

o0 coshuxu b4 _(L— i -
2 f du ~ | gt 4 [ _gnltn) (A.6)
1 (@Lu — 1)J/uZ — 1 2u(L — x) 2 (L + x)

one finds

1 forul > 1 <1 pux > 1

Al ) oy (A7)
for uL > 1 <1 ux < 1.

=

=

ux

Appendix B. Normal ordering and Bogoliubov transformation

In the subsequent discussions, we make frequent use of identities: (1)=& e'", (2)
elef = elABlgA+B — dA.BlgBeA and (3) : @ :: ef ;= A" 871 eA+B: where AT and A~
denote the annihilation and creation operator partd ofespectively. With massless fields
(2.2)

1 o
[p9(t, x) ™, ¢2(0,007] = _(sabg In{1 — g 2rittx—ia)/Ly (B.1)

We also note that
1 { e+i71,x/L e—inx/L

_ __ dnx/L
I 11 = erzricriofL + 1_ e2ri—ia/L } =e™"8,(x)

(B.2)

e—‘rirrx/L -1 L 7.[2 X 77[4 x3
m—ﬁ<x+ie +€Z+%F+'”>
We have seen that boson fields become massive due to the Coulomb interaction and
fermion masses. When this happens, the vacuum also changes and in two dimensions
nonvanishing chiral condensates result.
It is most convenient to work in the Sd@dinger picture. A boson field is generically
denoted by (x) with its conjugatell(x). On a circle they are expanded as

1 ' )
_ PnX i —ipnx
d(x) = n%éo an(u)L{c”(M)é + ¢, (ne "}
(B.3)

_ wy (1) ipnx —ipax
M(x) = '; o e (e — cl (e
where p, = 27n/L andw,(1) = /p?+ 2. Annihilation and creation operators (1)
andcf,(u) are defined with respect to a mass The left- and right-moving mode#,, (x)
and¢_(x), of ¢ = ¢, + ¢_ are defined by the < 0 andn > 0 components in (B.3). In
the massless limit this corresponds to (2.2) in the &dimger picture.
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Sometimes we need to tregt’s separately. One finds

1 1 (L
P (x) = §¢>(x) + Z/ dy F(x — y; w)TIg(y)
0
o . (B.4)

| ; .
F(x; M) — {67271|nx/L _ e+2n|nx/L}.
; wn (1)

Note that the definition op. (x) depends on the reference masas opposed to that @f(x)
andIlgs(x). In the massless theoy'(x; 0) = L, (x) — 1 so thatll(x) = ¢ (x) — ¢ (x).
We have an identity among,(1)’s with different u's:

¢alt1) = cOSHY, (113 p2)e, (112) + Sinh6, (ua; p2)e, (112)

[Cosmn(m; Mz)} _1] ey | feno) (B.5)
sinho, (ua; w2) | 2 |\ wa(i2) wn(p) |
In other words the change in the boson mass induces a Bogoliubov transformation. The
vacuum with respect to a boson masss defined byc, (n)|vag u) = 0.
In our formalism fermion fields are first bosonized in the interaction picture defined
by massless bosons. Boson fields then acquire masses and the vacuum is redefined. In

particular boson fields are normal-ordered with respect to physical boson masses. One
useful relation is

2 o0

S o

n=1

S

2

h

eimﬁ(/\") — exp{ —

from which it follows [3, 30]

Nole*?™] = B(uL)*/* N, [e**]

B(uL) — > 1 1
by = exp{ - ; <\/112 + (uL/2m)? - ;>} (B.7)

—MLex +n 2/00 dr
T Ax P1Y nL o ewlcoshe 1"

In the following we make use of simplified notatiop:. (x) refers to the massless field,
w, = w,(0) andb, = 6,(0; n). N,[A(c, ch] denotes that the operatdr is normal-ordered

with respect tac, (1) and el (n). Some useful identities are
No[eia¢(x)+iﬂ¢(y)]/Nﬂ[eia¢(X)+iﬂ¢(y)] - B(ML)(a2+ﬂ2)/4ﬂefaﬂ{A(xfy:,/L.L)fA(xfy;O,L)} (B.8)

No[eie+#+ () Ha—e-(7 / N, [eia+¢3+<x)+m7¢3f )]

o0

1
= exp{ - Z; 5oL [20; a coshy, sinhé, + (e + a?) sint? 0,1]}

N - 1 sinhé, ipx L ipox
butri =3 chosmn)(C"(“)é" + ¢ (e )

- (‘;?j:‘g ) (e 4 ¢l (M)é””")} (8.9)

Nofgle#+(0-1a0- OB 0 =iB6-0)] /v [k ()—iark-CO+BR () =iBF-0)]

= B(ulL) (@®+$%) /47 g-ap{A(x—yiu. L)~ A(x=y:0.L)} g= 3 (@*+BH)h (Ot u. L) —ahx—y:p. L)
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Re(x) = Z “’”(“ (ca(WEF ™ +h.C)

2

1 K  PnX
h(x;p, L) = 2L;w2wn(u)é . (B.10)

Appendix C. Useful identities for zero modes

(1) Free massless fermion
In a theory of a free massless fermion the Hamiltonian in the bosonization method is
given by

H=—(4p +p2)+/ dx > (¢ +9) (€1

where¢ = ¢, + ¢_ represents a massless boson defined in (2.2). The vacuum state is
|Wyae) = [n = 0), i.e. p|Wyae) = 0. Note that(€“?) = §, 0. Sinceq(t) = q + 4npt/L,
(elaq(t)elbq(0)> _ 8 727'”11 t/L

iaq(t) dbg(0)7y _ —2mia?|t|/L (C2)
(T[e el ]) - 8a+be .

(2) QED;
If all fermions are massless, the model is solved in the operator form in the Heisenberg
picture. The solution to (3.4) in th&-flavour model is
, , Tl .
Oy (1) = Oy, cosut + N Py sinut

N .
Py () = Py cosut — —@’W sinut
Tl

Qa(t) = qa + _(pa - Zpb) (C3)

Pu(f)ZPa
~ - Tt
a(l) = {qa — Pa
4a(t) = qa + P
[’a(t)zﬁa'

Here®), andg, are defined in (3.3).
In the N = 1 model, for an integet,

(é€q+iﬁ(®w+2rrp)+iypw) — dW0gmuLp?/A—(y—2n0)?/Am L (C.9)
It follows from (C.3) and (C.4) that, for an integer+ 3,

w(a? + B?) B 2nap e‘i’”} .
nL nL

(O gha0)y — exp{i(a +B)o — (C.5)
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